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Beaumont TBM Tunnel, 1880 : wedge-failure, stress-failure, tidal influence. Three  photos separated by 150 m. 
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WHY THE 
‘OVER-BREAK’/ 

POTENTIAL 
INSTABILITY? 

 
 Because of 

adverse Jn, Jr, 
Ja (JRC, JCS, 

ϕr), Jw, SRF  

 

……and 

dip/dip 

direction, 

gravity, 
density. 
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The origin and numerous 
applications of these 

parameters (Jn, Jr, Ja, JRC, 
JCS, ϕr, Jw, SRF, Q) will be 

(part of) the subject of this 
lecture. 
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ACTUAL EMPIRICAL BEHAVIOUR 
or ASSUMED BEHAVIOUR ?? 

Empiricism: a posteriori (= behaviour 
based on experience ) is better than  

a priori (= ‘behaviour’ (?) based on 
assumptions). 
 

There are too many a priori assumptions (clothed 
in some amazing algebra) which are used by 

many of us these days….e.g. GSI/Phase 2? 
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PART 1 
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A DISCONTINUOUS (and idealized) 
EXPERIMENTAL/EMPIRICAL 

START IN 1966 

 
     at Imperial (‘Empirical’) College, 

London 
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DST on 200 

artificial tension 

fractures in a 

variety of brittle 

model materials  

(Barton, 1971) 
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NOTE LACK OF ACTUAL 

COHESION UNLESS 
STEPPED (“secondary”) 
FRACTURES ARE TESTED 
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(------ = no decimal places) 
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τ = σn . tan [ 20. log( UCS/σn ) + 30º ] 



2D  JOINTED “ROCK-MASS” 

Tension-fracture models  used 
for ‘rock slope’ studies (at 
Imperial College) 1968-1969. 
 

‘Nuclear power plant’ rock 
cavern investigations  (50m) 
(at NGI) 1977-1978 (pre-UDEC) 
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2D ‘rock mass’ research  
conducted in the laboratory  

 
 

 

Physical (1977) models (this colour) 
follow here which pre-date UDEC: 

 

 Artificial, but some useful  lessons 

 They are physical, not conceptual 

 They are ‘a posteriori’, not ‘a priori’ ! 
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BIAXIAL 
LOADING 
 
Scale-effect 
investigations  
 
250, 1000, or 
4000 blocks. 
 
“Always” got 
rotational 
failures with 
small blocks! 
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Shearing by rotation 
of individual blocks, 
following local 
‘kinking’ within  
the mass? 

BIAXIAL  LOADING  

TESTS  WITH  HIGHLY 

ANISOTROPIC  

STRESS  APPLICATION 

(as under a big rock slide?) 
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APPROPOS: LARGE DEBRIS and ROCK SLIDES  (Front cover: eds. 

J.Clague, D. Stead) 
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FRANK SLIDE  (Wikipedia) 
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TRAVEL DISTANCE VARIABILITY 

• SAY 0.5 to 1 km TRAVEL DISTANCE EXPECTED 

• WITH ‘AIR-CUSHION’ (Chinese research) 2km 

 

• REALITY (sometimes) is > 20 km 

• SLIDE MASSES TOO HOT FOR RESCUE PARTIES 

 

WHY?: Rotational friction, block crushing, extreme 
heating, ground water converted to steam, ‘steam-
cushioned slides’ due to ‘gas’ pressure?   

(V2/V1 = 1,400:1) 16 



SUCCESSIVE HALVING OF THE BLOCK SIZE – HAS DRAMATIC 
ROTATIONAL (degree-of-freedom) EFFECTS, ALSO WITH UDEC-MC.  

(helps to explain the drama of fault zones: worse with clay and water) 
 

Shen, B. & Barton, N. 1997. The disturbed zone around tunnels in jointed rock masses.  
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ROCK JOINTS : 
 

THEY (ALSO) SHOWED 

NON-LINEAR SHEAR STRENGTH 

(and no cohesion!) 
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130 joint samples. Roughness 
measurement and tilt test 

( Barton and Choubey, 1977) 
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where α° = arctan (τ/σn) 

 
(Barton and Bandis, 1990) 
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TILT  TEST ‘THEORY’ 



130 rock-joint samples 
 (Barton and Choubey  1977) 

 
Three curved peak shear 
strength envelopes and 
no cohesion! 
 
1.Maximum strength 
with JRC = 16.9 
 
2. Mean parameters 
JRC = 8.9  
JCS = 92 MPa 
φr = 28° 

 
3. Minimum strength 
       with φr = 26º 
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Note: the original 
tension fracture-based 
equation (1971) was:  

 
τ = σn tan [ 20.log(UCS/σn )+30º] 

 

 

JRC     JCS      φb (now φr) 
 

  

23 

 

TO THOSE WHO HAVE PERFORMED PH.D.’s AND ARE SELLING 

SOFTWARE – PLEASE NOTE it is φr since 1977 ! 
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VISUAL MATCHING OF ROUGHNESS – for 
JRC… USEFUL BUT HAS LIMITATIONS 

(Barton and Choubey, 1977) 
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EXAMPLE of ROUGHNESS CONTRAST – BACK-CALCULATED 
FROM DST (L = 400 mm: Nevada Test Site welded tuff) 

JRC = 16 

JRC = 1 



NOTE: 
above JRC-

JCS strength 
criterion was 

developed 
from tilt and 

push test 
correlation 
with DST 

 
(not from 
analysing 
roughness 
profiles!) 
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JCS > UCS (?) 

JCS < UCS 
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SCALE EFFECTS FOR 
INDIVIDUAL JOINTS 
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Tilt tests 
repeated 

at different 
scale -   

 
there is 

almost no 
damage. 

 
 Note:  

JRC1 < JRC2 

 
 

(Barton and 
Choubey, 

1977) 
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Bandis 1980 Ph.D. 

 

Ahead-of-their-time 
scale-effect 

 investigations.  
One set of many joint 

replica tests. 
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The angular components of peak shear strength, with 
asperity strength (SA), and peak dilation angle (dn )  

each included. (Barton, 1971) 
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Asperity component SA  means that JRC (or φr) cannot be 
back-calculated by subtracting dilation (dn) from peak 

strength. Φr  or Φb  would then be dangerously too 

high (e.g. 40°) as in some earlier Hong Kong work.   

 (JRC would also be incorrect). 
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SCALE-EFFECTS  
 REDUCTION OF  
of JRC and JCS 
with block-size 

Ln > L0 

(Bandis, Dearman, Barton, 1981) 33 
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JRCmobilized  
defined 

 
 

(also with 
dimensionless 
displacement) 

 

Barton, 1978, 1982 
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Then possible to 
predict/model  shear stress-
displacement and dilation-

displacement behaviour. 
 

 (Barton, 1982, with scaling 

 from Bandis et al. 1981). 

 
Note (double) scale effect on  

shear stiffness (Ks),  
because it is strongly  

scale-and-stress-dependent. 
 

(Ks usually < 1 MPa/mm, 
0.1 MPa/mm if large blocks) 

 
 
 
 
 
 
 
 



Well-jointed 
wedge. 

 Remains in 
place 
because of 
the higher 
shear 
strength of 
the smaller 
component 
blocks ? 



Larger blocks defining wedge  
(failure at much shallower angle of dip) 
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Before leaving shear strength envelopes: 
When a rock mass fails: 1st, 2nd, 3rd (and 5th) envelopes are mobilized 
at different strains  - not like H-B / GSI estimation (Barton, 1976, 1999, 2006)  
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INTO THE FIELD !! 
 

CHARACTERIZATION OF JOINTING, 
DEFORMABILITY, AT MAJOR DAM 

SITES 

• IRAN: KARUN IV 230 m  

• IRAN: BAKHTIARY 325 m 

• CHINA: BAIHETAN 283 m (2 x 8,000 MW) 
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“You need to hire a rock-climbing-engineering-geology group 
to characterise the major joint planes that define the two 

major wedges that your company are worried about” 
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Some kilos lighter, and not telling his wife the reason, Iranian 
colleague M.Zargari is profiling major-joint MJ-67,  

Karun IV Dam, Iran 
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Schmidt rebound (R) on intact rock (> r on joint plane) 
Karun IV Dam site canyon, Iran 

 



The a/L method 
for roughness  
is used when 

JRC is TOO 
LARGE 

 

43 



 

 

For the very 
rough 

bedding 
plane, had 

to use 

“a/L” 

method 

 

Mean  

JRCn = 11 
(for 2m block size)  

 

 

Joint Roughness Coefficient (JRC)
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COLUMNAR JOINTING 

AT A MAJOR DAM SITE IN CHINA 

 
(Baihetan, 283m, 2 x 8000 MW) 
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BAIHETAN DAM and POWER GENERATION: 2 X 8,000 MW 
HydroChina/ECIDI 
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RECORDING OF 
ROUGHNESS FOR JRC 

ESTIMATION, 70 to 140 m 
into the canyon walls. 

 
(May need stripping to this 

competent-rock depth) 

RECORDING OF 
SCHMIDT-
HAMMER 

REBOUND FOR  

JCS ESTIMATION 
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APPLICATION OF JRC and JCS to 
ROCK MASS DEFORMABILITY 

and to  
MODELLING with UDEC-BB 

 
(see columnar basalt behaviour) 
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Stress-closure and 
scale-effect shear  
tests. (Bandis et al. 1981 

and 1983 ) 

 
 
The N, S components 
in rock mass  
load-deformation 
mechanisms. 
 (Barton, 1986) 

 
 
There is plate-load / 
block-test evidence 
for these three P-Δ 

type-curves. 
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UDEC-BB simulations 
(Chryssanthakis, NGI) 

 
EMPHASISES WHY 
DISCONTINUUM 

ANALYSES GIVE MORE 
EXCITEMENT/INTEREST/ 

VALUE/REALISM 
than analyses without 

joints! 
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PART 2 
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Q-SYSTEM 

  SINCE 1974 Q HAS ACTUALLY BECOME “A SYSTEM”, 
SINCE THERE ARE NOW SEVERAL COMPONENTS.  

 

 (50 rock types in first 210 cases, 1250 case records) 
 

 Q rockmass classification, Q-histograms 

 Q for ‘single shell’ NMT support (B + Sfr, RRS) 
 

 QC (= Q x UCS/100) for correlating with VP  and EMASS 
 

 Q as part of QTBM  for TBM prognosis 
 

 QSLOPE  for selecting safe slope angles (in progress) 
 

 Qc split into CC and FC (if ‘continuum’ modelling) 
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EXAMPLE OF SLOPE ANGLE MATCHED TO 
GEOTECHNICAL PROPERTIES  

(or to local Q-slope = 0.1, 1.0, 10).  
(Panama expansion project, 2011. PCA photo) 



Why/how was Q developed? 

Because of a question to NGI in 1973: 

“Why are Norwegian underground power houses 
showing such a variety of deformations”? 

(from Norwegian State Power Board/ STATKRAFT) 
 

Question passed to NB. Answer given after 6 
months of Q-system development! 

 

VARIABLES: Rock mass quality, support type/quantity, 
span/height, depth, stress.  

 

212 case records used. B, S(mr), B+S(mr), CCA. 
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VARIABLE WORLD NEEDS BROAD-REACH CHARACTERIZATION METHOD  
56 



VARIABLE WORLD CANNOT ALWAYS BE COMPUTER MODELLED – BUT 
IT CAN BE CHARACTERIZED  57 
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Strength contrast, modulus contrast, 
constructability contrast (15 years/1 year)!  

0.001→1000, or 5→95, or F7→F1  ??? 
 
 
 



A GLIMSE OF NMT  
(SINGLE-SHELL TUNNELLING) 

 
 for which the Q-system was 

actually designed 
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Grimstad and 
Barton, 1993 

 
 (Norwegian 
conference),  

 
Barton and 

Grimstad, 1994  
 

(Austrian 
conference). 

The Q-system is most strongly associated with ‘single shell’ solutions : 

(B+Sfr + water control) (= NMT= Norwegian Method of Tunnelling) in mostly better 
rock, costs about 1/5 x ‘double-shell’ NATM,  e.g. 20,000 US $/m compared to 

100,000 US $/m  (Costs from many countries). 
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RRS 
is a 

flexible 
(until 

bolted) 

‘lattice’ 
girder. 

 
3D 

effect 
because 
of S(fr) 
arches. 
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QUESTION: 

SHALLOW 
METRO or 
DEEP 
METRO? 
 

• MIXED-FACE 
OR ROCK? 
 

• 5 m PER WEEK 
OR 20 m PER 
WEEK? 
 

• COST 
DIFFERENCE 
MAY BE 5:1 

     (at least) 
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RELATIVE COST FOR TUNNEL EXCAVATION AND SUPPORT 
(Barton, Roald, Buen, 2001) 

………potential benefits of pre-grouting, especially if Q ≈ 0.1 
 
 



Pre-injection screen 30-70 holes, 20-30m long, 0.5-1.0 m c/c 
(Hognestad and Frogner, 2005….. and Garshol  (ICE/HK, 2010) 



BÆRUM TUNNEL RAIL TUNNEL. Pre-injection in progress. Truck mounted 
grout storage and mixing. Note up to 70 holes for dry 110m2 tunnel in 

shales and limestones. Packered injection ‘lances’ are chained for 
safety. 24-30 hours CYCLE time. Cost of finished NMT tunnel: < 25,000/m 

 



Q-HISTOGRAM METHOD 
of logging 
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THE RESULT OF Q-HISTOGRAM 
LOGGING OF SIX CORES AT A 
PLANNED METRO PROJECT IN 

HONG KONG. DEVIATED 
HOLES.  

Q - VALUES: (RQD / Jn) * (Jr / Ja) * (Jw / SRF) = Q

Q (typical min)= 10 / 20.0 * 1.0 / 5.0 * 0.50 / 5.0 = 0.010

Q (typical max)= 100 / 2.0 * 2.0 / 1.0 * 1.00 / 1.0 = 100.0

Q (mean value)= 71 / 9.6 * 1.5 / 2.8 * 0.69 / 1.5 = 1.78

Q (most frequent)= 85 / 9.0 * 1.5 / 2.0 * 0.66 / 1.0 = 4.68

Rev. Report No. Figure No.

HONG KONG KWUN TONG LINE EXTENSION  NB&A #1 6
Borehole No. : Drawn by Date

Cumulative Q-histogram log for following C1001 (4 holes) Six holes NB&A 4.3.2010

Depth zone (m) Checked

and C1002 (2 holes): IDH-032, DH-029, DH-215, DH-226, 10-74 m range           nrb

Approved

DH-403 and DH-404.
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How do the Q-parameter histograms 
change, as depth is increased in the 

same rock type? 



CHARACTER OF  
SAPROLITE AND SOIL  



LOGGED CHARACTER OF  
NEAR-SURFACE 
SANDSTONES 



LOGGED CHARACTER  
OF DEEPER SANDSTONES 



J & K rail-link, Kashmir. 
Here 12m/2 years. 

Q - VALUES: (RQD / Jn) * (Jr / Ja) * (Jw / SRF) = Q

Q (typical min)= 10 / 20.0 * 1.0 / 12.0 * 0.20 / 20.0 = 0.000

Q (typical max)= 100 / 3.0 * 3.0 / 1.0 * 1.00 / 0.5 = 200.0

Q (mean value)= 50 / 10.9 * 1.6 / 3.5 * 0.68 / 5.4 = 0.26

Q (most frequent)= 45 / 15.0 * 1.5 / 1.0 * 0.66 / 2.0 = 1.49

Rev. Report No. Figure No.

J and K Rail Link, Kashmir: Northern Railways,Dehli  NB&A #2 7
Borehole No. : Drawn by Date

An overall impression of conditions witnessed and imagined Tunnelling NB&A 2.5.2009

Depth zone (m) Checked

from reports of tunnelling difficulties, with input from the 5 to 1500 m nrb

Approved

extensive road cuttings also observed near tunnels.
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Class 2: Q = 10 to 40  
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 2, Q =10 - 40
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 2, Q =10 - 40
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 2, Q =10 - 40



Class 3: Q = 4 to 10  
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 3, Q = 4 - 10
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 3, Q = 4 - 10
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 3, Q = 4 - 10

8.
00

6.
00

4.
00

3.
00

2.
00

1.
00

0.
75

2500

2000

1500

1000

500

0

Ja

Fr
e

c
u

e
n

c
ia

Media 2.581

Desv.Est. 0.8259

N 10891

Histograma de Ja
Normal 

Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 3, Q = 4 - 10



Class 4: Q = 1 to 4 
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 4, Q = 1 - 4
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 4, Q = 1 - 4
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 4, Q = 1 - 4
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 4, Q = 1 - 4



Class 5: Q = 0.1 to 1  
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 5, Q = 0.1 - 1
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 5, Q = 0.1 - 1
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Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 5, Q = 0.1 - 1
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VELOCITY-MODULUS-
PERMEABILITY-Q-VALUE 

CHALLENGES,  

AT BAKHTIARY DAM SITE, IRAN  

(325 m) 
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How to characterize 
voids?  

Velocity-modulus-
permeability-Q-value 
correlation difficulties. 
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Upper 
diversion 

tunnel: top 
heading 
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In diversion tunnel 
Qm.f. = 40 
Qmean = 14 

 
Next steps: 

 
1. Convert Q to Qc 

(UCS?) 

2. Convert to Vp 

3. Convert to Emass 
• 1. 
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Q - VALUES: (RQD / Jn) * (Jr / Ja) * (Jw / SRF) = Q

Q (typical min)= 10 / 15.0 * 0.5 / 6.0 * 0.66 / 5.0 = 0.007

Q (typical max)= 100 / 2.0 * 4.0 / 0.8 * 1.00 / 1.0 = 266.7

Q (mean value)= 73 / 6.0 * 2.0 / 1.6 * 0.99 / 1.1 = 13.74

Q (most frequent)= 80 / 4.0 * 2.0 / 1.0 * 1.00 / 1.0 = 40.00

Rev. Report No. Figure No.

BAKHTIARY DAM HEPP   UPPER DIVERSION TUN  NB&A #3 6
Borehole No. : Drawn by Date

Q-histogram log of overall SV7 through SV2 rock massss Diversion Tunn NB&A 4.8.2010
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TBM prognosis and  
comparing with drill-and-blast     

QTBM 
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145 cases, ≈ 1000 km, open-gripper trends (Barton, 2000). 
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SEVERAL PAGES OF WORLD RECORDS BY TBM – ASSEMBLED BY 
ROBBINS, GIVE THE FOLLOWING RESULTS WHEN COMBINED 

 Assume 24 hrs/day, 168 hrs/week, 720 hrs/month 

 

8
4 
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WHY TBM DELAYS IN FAULT ZONES ? 

“Theo-empirical” reasons 

 Lack of belief gets paid for! 
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‘THEO – EMPIRICAL’ REASONS WHY FAULT ZONES ARE SO 
DIFFICULT FOR TBM – THREE BASIC EQUATIONS: 

1. AR = PR x U (all TBM must follow this) 

2. U = Tm   (due to the decelerating advance rate with time) 

3. T = L / AR (obviously time for length L must be 
proportional to 1/AR) 

4. T = (L / PR) (1 / (1+m) (from #1, #2 and #3) 

5. This is VERY important for TBM……since (-)m is strongly 
related to Q-values …..in FAULT ZONES. 

6. It is important because very negative (-)m values make 
1/(1+m) TOO BIG – giving ‘huge delays’ (T in months or 
years) 
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BUT…Q CAN BE IMPROVED BY PRE-GROUTING ! 

(IMPROVE –m.....to less negative value) 



RAIL TUNNEL PROGNOSIS – OSLO-SKI / FOLLO-BANEN 
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CENTRAL Q-VALUES AND QTBM VALUES ARE BEST FOR GOOD TBM 
PROGRESS. TAIL-DISTRIBUTIONS ’BETTER’ WITH D+B ! 

 
Note records 
for drill-and-
blast:  

176m/one face 
in 168 hours 
(7x24) week. 

 
Whole project 
104 m/week 
average  

– IN COAL-
MEASURE 
ROCKS needing 
B+S(fr). 

 

LNS Norway 



PHYSICAL (2D) MODELS of ROCK 
CAVERNS, AS FORE-RUNNER TO 

UDEC-BB FLEXIBILITY 
(1977-1978) 
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THE ‘jointed’ NATURE OF THE MODELLING MATERIAL 
(Post- ‘seismic’ loading result, following 0.2 to 0.5 g) 
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Physical and FEM 
modelling (Barton and 

Hansteen, 1979) suggested 
possible ‘heave’ 
resulting from large-
cavern construction 
near the surface…….. 
 
……….depended on joint 
pattern and horizontal 
stress level in the 
physical models. 
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GJØVIK CAVERN 

INCREASE OF LARGEST CAVERN 
SPAN BY ALMOST 2 x 

 

(Note also the three deep caverns 
in a Norwegian road tunnel) 
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Gjøvik 
Olympic cavern 
represented a 
big jump…….in 

span and 
confidence!  

 
(Figure from Sharp, 

1996: UK Nirex study) 
 
 
 
 

BLUE: Lærdal Tunnel 
(three lorry-turning and 

‘wake-up-driver’ 
caverns in 24.5 km long 

tunnel) 



LÆRDAL TUNNEL lorry-turning caverns (three of them) 
30 m span, depths 1,000 to 1,400 m (Photo G.Lotsberg) 
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100 

Gjøvik cavern : an ’extension’ of 1974 Q-system data base. 
(Qmin, Qmean, and Qmax values of 1, 12, 30 logged in the cavern) 

RQD = 60-90%, UCS = 90 MPa was typical. 
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GJØVIK CAVERN JOINT-GEOMETRY ASSUMPTIONS 
input data, boundary stresses 

 Barton, N., By, T.L., Chryssanthakis, P., Tunbridge, L., Kristiansen, J., Løset, F., Bhasin, R.K., Westerdahl, 
H. & Vik, G. 1994. Predicted and measured performance of the 62m span Norwegian Olympic Ice 
Hockey Cavern at Gjøvik. Int. J. Rock Mech, Min. Sci. & Geomech. Abstr. 31:6: 617-641. Pergamon. 
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TOP HEADING TOO WIDE TO OBSERVE FROM ONE LOCATION 
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The final modelled 7 to 9 mm (downwards directed) deformations 
matched  the unknown (to be measured) result almost perfectly.  

(UDEC-BB modelling by Chryssanthakis, NGI) 
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DEFORMATION RECORDS FROM MPBX AND LEVELLING 

Δ = 7 to 8 mm 

was typical. 

 

Construction 

period: week 24 to 

week 52, following  

arrival of access  

tunnels (top and 

bottom). 

 

B x H x L  

= 62 x 24 x 90 

 = 140,000 m3 

 

 

Typical NMT 

B + S(fr) 

DRAINED 



CONTINUUM (??) 
or  

DISCONTINUUM 
MODELLING  
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Borehole 
stability 

studies at 
NGI 

 
 Continuum 
becomes a 

discontinuum! 

 
Drilling into  
σ1 > σ2 >σ3 

loaded  

cubes 
0.5 x 0.5 x 0.5 m 

 of model 

sandstone 
108 



Jinping II (D+B) – ISRM News Journal 
Physical model – bored under stress (NGI)  
Jinping II (TBM) – ISRM workshop (NB) 

Log-spiral 

shear 
modes in 

weaker rock 
types 

109 



Three FRACOD models showing fracturing development. 
 Baotang Shen, 2004 
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Cundall and Cundall………but  the choice is clear! 
(NGI modelling by Lise Backer) 
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NEED for CHANGE 
      CONVENTIONAL 

continuum modelling 
methods are suspect. 

     Poor simulation with 
Mohr Coulomb or 
Hoek and Brown 
strength criteria.  

 

    ( Hajiabdolmajid, Martin 
and Kaiser,  2000 
“Modelling brittle failure”, 
NARMS.) 

 

    So why performed by 
so many consultants? 
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Degrade cohesion, mobilize friction: excellent match. 
( Hajiabdolmajid, Martin and Kaiser,  2000 “Modelling brittle failure”, NARMS.) 11

3 



NOW AN ALTERNATIVE WAY TO 
ESTIMATE ‘c’ and ‘φ’ FOR ROCK 

MASSES 
 

(but still need to degrade c at small 
strain, and mobilize φ at larger 

strain) 
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CC and FC from Qc = Q x σc /100 :      
Qc = RQD/Jn x Jr/Ja x Jw /SRF x σc /100)  
 

 

 

CC = cohesive strength ( the component of the rock mass 

requiring shotcrete)  
 

FC = frictional strength  ( the component of the rock mass 

requiring bolting).   
 

Cut Qc into two halves →’c’ and ‘φ’   

100

1 c

n SRFJ

RQD
CC












  Jw

Ja

Jr
tanFC 1
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GSI-based 
algebra for 
 ‘c’ and ‘φ’ 

 

contrasted 

with 

 

Q-based 

‘empiricism’ 

 

Note: 

shotcrete 

needed when 

low CC, 

bolting 

needed when 

low FC. 
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Four rock masses with successively reducing character: more 
joints, more weathering, lower UCS, more clay.  

 

          Low CC –shotcrete preferred                Low FC – bolting preferred 

45

Unpredicted degrees of weathering have a directly negative effect on both 

these strength (or weakness) components and therefore also on the 

support requirements.
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Table of Q-parameters with declining quality (resembling weathering) (Barton, 2002).
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HIGH CC      HIGH FC 
 

Q ≈ 100/6 x 4/0.75 x 1/5 

 

 

CC ≈ 100/6 x 1/5 x 150/100 

≈ 5 MPa 

 

FC ≈ tan-1 (4/0.75 x 1/1) 

≈ 79º 

MINING AND CONSTRUCTION MAGAZINE 

 

Picture of the mountain-side rock sculpture of 

the Indian chief ‘Crazy Horse’, in North 

Dakota, USA.  
118 

(SRF = 5 due 

 to near-surface) 



FLAC 3D  
 

 ‘c + σn tan φ’ (left) 
 ‘c  then  σn tan φ’ (below) 

 
(Barton and Suneet Pandey, 2011) 

 
 

‘New’ approaches: 
 

 c then tan φ (not new, but rare!) 
 

 Comparing modelled and measured 
displacements with pre-installed 
MPBX. 

 

 Back-calculating Q from empirical Δ 

equations, as well as logged Q. 
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‘C then σn tanφ’ (as used in Barton and Pandey, 2011) 
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NMT tunnel (= single-shell) 
 through pre-injected (10 MPa pressure) shales, limestones.  
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